On Varieties of Left Distributive Left Idempotent Groupoids

نویسنده

  • David Stanovský
چکیده

We describe a part of the lattice of subvarieties of left distributive left idempotent groupoids (i.e. those satisfying the identities x(yz) ≈ (xy)(xz) and (xx)y ≈ xy) modulo the lattice of subvarieties of left distributive idempotent groupoids. A free groupoid in a subvariety of LDLI groupoids satisfying an identity x ≈ x decomposes as the direct product of its largest idempotent factor and a cycle. Some properties of subdirectly ireducible LDLI groupoids are found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On reductive and distributive algebras

The paper investigates idempotent, reductive, and distributive groupoids, and more generally Ω-algebras of any type including the structure of such groupoids as reducts. In particular, any such algebra can be built up from algebras with a left zero groupoid operation. It is also shown that any two varieties of left k-step reductive Ω-algebras, and of right n-step reductive Ω-algebras, are indep...

متن کامل

Non-idempotent left symmetric left distributive groupoids

Subdirectly irreducible non-idempotent groupoids satisfying x · xy = y and x · yz = xy · xz are studied.

متن کامل

Selfdistributive Groupoids. Part A2: Non-idempotent Left Distributive Left Quasigroups

The present paper is a comprehensive survey of non-indempotent left distributive left quasigroups. It contains several new results about free groupoids and normal forms of terms in certain subvarieties. It is a continuation of a series of papers on selfdistributive groupoids, started by [KepN,03].

متن کامل

Enumerating Left Distributive Groupoids

Groupoids satisfying the equation x(yz) = (xy)(xz) are called left distributive, or LD-groupoids. We give an algorithm for their enumeration and prove several results on the collection of LD-groupoids extending a given monounary algebra.

متن کامل

Commutative, idempotent groupoids and the constraint satisfaction problem

A restatement of the Algebraic Dichotomy Conjecture, due to Maroti and McKenzie, postulates that if a finite algebra A possesses a weak near-unanimity term, then the corresponding constraint satisfaction problem is tractable. A binary operation is weak near-unanimity if and only if it is both commutative and idempotent. Thus if the dichotomy conjecture is true, any finite commutative, idempoten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005